\(\int \frac {a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx\) [1011]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 48, antiderivative size = 110 \[ \int \frac {a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {2 \left (a b B-a^2 C-b^2 C\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{3/2} (a+b)^{3/2} d}-\frac {b (b B-2 a C) \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))} \]

[Out]

2*(B*a*b-C*a^2-C*b^2)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(3/2)/(a+b)^(3/2)/d-b*(B*b-2*C*
a)*sin(d*x+c)/(a^2-b^2)/d/(a+b*cos(d*x+c))

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.104, Rules used = {24, 2833, 12, 2738, 211} \[ \int \frac {a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {2 \left (a^2 (-C)+a b B-b^2 C\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{3/2} (a+b)^{3/2}}-\frac {b (b B-2 a C) \sin (c+d x)}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))} \]

[In]

Int[(a*b*B - a^2*C + b^2*B*Cos[c + d*x] + b^2*C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^3,x]

[Out]

(2*(a*b*B - a^2*C - b^2*C)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(3/2)*(a + b)^(3/2)*d)
 - (b*(b*B - 2*a*C)*Sin[c + d*x])/((a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 24

Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((A_.) + (B_.)*(v_) + (C_.)*(v_)^2), x_Symbol] :> Dist[1/b^2, Int[u*(a + b*
v)^(m + 1)*Simp[b*B - a*C + b*C*v, x], x], x] /; FreeQ[{a, b, A, B, C}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] &&
 LeQ[m, -1]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2833

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(a^2 - b
^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {b^2 (b B-a C)+b^3 C \cos (c+d x)}{(a+b \cos (c+d x))^2} \, dx}{b^2} \\ & = -\frac {b (b B-2 a C) \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\int \frac {b^2 \left (a b B-a^2 C-b^2 C\right )}{a+b \cos (c+d x)} \, dx}{b^2 \left (a^2-b^2\right )} \\ & = -\frac {b (b B-2 a C) \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\left (a b B-a^2 C-b^2 C\right ) \int \frac {1}{a+b \cos (c+d x)} \, dx}{a^2-b^2} \\ & = -\frac {b (b B-2 a C) \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\left (2 \left (a b B-a^2 C-b^2 C\right )\right ) \text {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right ) d} \\ & = \frac {2 \left (a b B-a^2 C-b^2 C\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{3/2} (a+b)^{3/2} d}-\frac {b (b B-2 a C) \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.64 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.97 \[ \int \frac {a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {-\frac {2 \left (-a b B+a^2 C+b^2 C\right ) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{3/2}}+\frac {b (-b B+2 a C) \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}}{d} \]

[In]

Integrate[(a*b*B - a^2*C + b^2*B*Cos[c + d*x] + b^2*C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^3,x]

[Out]

((-2*(-(a*b*B) + a^2*C + b^2*C)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(3/2) + (b*
(-(b*B) + 2*a*C)*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + d*x])))/d

Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.25

method result size
derivativedivides \(\frac {-\frac {2 b \left (B b -2 C a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )}+\frac {2 \left (B a b -a^{2} C -C \,b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}}{d}\) \(138\)
default \(\frac {-\frac {2 b \left (B b -2 C a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )}+\frac {2 \left (B a b -a^{2} C -C \,b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}}{d}\) \(138\)
risch \(\frac {2 i \left (B b -2 C a \right ) \left (a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}{\left (-a^{2}+b^{2}\right ) d \left ({\mathrm e}^{2 i \left (d x +c \right )} b +2 a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) B a b}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) a^{2} C}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) C \,b^{2}}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) B a b}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) a^{2} C}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {-a^{2}+b^{2}}\, a}{b \sqrt {-a^{2}+b^{2}}}\right ) C \,b^{2}}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}\) \(566\)

[In]

int((B*a*b-a^2*C+b^2*B*cos(d*x+c)+b^2*C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*b*(B*b-2*C*a)/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+b)+2*(B*a*
b-C*a^2-C*b^2)/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 421, normalized size of antiderivative = 3.83 \[ \int \frac {a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\left [\frac {{\left (C a^{3} - B a^{2} b + C a b^{2} + {\left (C a^{2} b - B a b^{2} + C b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) + 2 \, {\left (2 \, C a^{3} b - B a^{2} b^{2} - 2 \, C a b^{3} + B b^{4}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d\right )}}, -\frac {{\left (C a^{3} - B a^{2} b + C a b^{2} + {\left (C a^{2} b - B a b^{2} + C b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (2 \, C a^{3} b - B a^{2} b^{2} - 2 \, C a b^{3} + B b^{4}\right )} \sin \left (d x + c\right )}{{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d}\right ] \]

[In]

integrate((B*a*b-a^2*C+b^2*B*cos(d*x+c)+b^2*C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

[1/2*((C*a^3 - B*a^2*b + C*a*b^2 + (C*a^2*b - B*a*b^2 + C*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d
*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(
b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) + 2*(2*C*a^3*b - B*a^2*b^2 - 2*C*a*b^3 + B*b^4)*sin(d*x + c))/
((a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c) + (a^5 - 2*a^3*b^2 + a*b^4)*d), -((C*a^3 - B*a^2*b + C*a*b^2 + (C*a^
2*b - B*a*b^2 + C*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c
))) - (2*C*a^3*b - B*a^2*b^2 - 2*C*a*b^3 + B*b^4)*sin(d*x + c))/((a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c) + (a
^5 - 2*a^3*b^2 + a*b^4)*d)]

Sympy [F(-1)]

Timed out. \[ \int \frac {a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate((B*a*b-a**2*C+b**2*B*cos(d*x+c)+b**2*C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((B*a*b-a^2*C+b^2*B*cos(d*x+c)+b^2*C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

Giac [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.55 \[ \int \frac {a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx=-\frac {2 \, {\left (\frac {{\left (C a^{2} - B a b + C b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{2} - b^{2}\right )}^{\frac {3}{2}}} - \frac {2 \, C a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )} {\left (a^{2} - b^{2}\right )}}\right )}}{d} \]

[In]

integrate((B*a*b-a^2*C+b^2*B*cos(d*x+c)+b^2*C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

-2*((C*a^2 - B*a*b + C*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c)
- b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/(a^2 - b^2)^(3/2) - (2*C*a*b*tan(1/2*d*x + 1/2*c) - B*b^2*tan(1/2*
d*x + 1/2*c))/((a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)*(a^2 - b^2)))/d

Mupad [B] (verification not implemented)

Time = 2.62 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.13 \[ \int \frac {a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx=-\frac {2\,\mathrm {atan}\left (\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a-2\,b\right )}{2\,\sqrt {a+b}\,\sqrt {a-b}}\right )\,\left (C\,a^2-B\,a\,b+C\,b^2\right )}{d\,{\left (a+b\right )}^{3/2}\,{\left (a-b\right )}^{3/2}}-\frac {2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (B\,b^2-2\,C\,a\,b\right )}{d\,\left (a+b\right )\,\left (a-b\right )\,\left (\left (a-b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a+b\right )} \]

[In]

int((C*b^2*cos(c + d*x)^2 - C*a^2 + B*a*b + B*b^2*cos(c + d*x))/(a + b*cos(c + d*x))^3,x)

[Out]

- (2*atan((tan(c/2 + (d*x)/2)*(2*a - 2*b))/(2*(a + b)^(1/2)*(a - b)^(1/2)))*(C*a^2 + C*b^2 - B*a*b))/(d*(a + b
)^(3/2)*(a - b)^(3/2)) - (2*tan(c/2 + (d*x)/2)*(B*b^2 - 2*C*a*b))/(d*(a + b)*(a - b)*(a + b + tan(c/2 + (d*x)/
2)^2*(a - b)))